Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 133: 112065, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608448

RESUMO

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.

2.
Transl Oncol ; 43: 101905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387388

RESUMO

BACKGROUND: Cholangiocarcinoma is a kind of epithelial cell malignancy with high mortality. Intratumor heterogeneity (ITH) is involved in tumor progression, aggressiveness, treatment resistance, and disease recurrence. METHODS: Integrative machine learning procedure including 10 methods (random survival forest, elastic network, Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox, supervised principal components, generalized boosted regression modeling, and survival support vector machine) was performed to construct an ITH-related signature (IRS) for cholangiocarcinoma. Single cell analysis was performed to clarify the communication between immune cell subtypes. Cellular experiment was used to verify the biological function of hub gene. RESULTS: The optimal prognostic IRS developed by Lasso method served as an independent risk factor and had a stable and powerful performance in predicting the overall survival rate in cholangiocarcinoma, with the AUC of 2-, 3-, and 4-year ROC curve being 0.955, 0.950 and 1.000 in TCGA cohort. low IRS score indicated with a lower tumor immune dysfunction and exclusion score, lower tumor microsatellite instability, lower immune escape score, lower MATH score, and higher mutation burden score in cholangiocarcinoma. Single cell analysis revealed a strong communication between fibroblasts, microphage and epithelial cells by specific ligand-receptor pairs, including COL4A1-(ITGAV+ITGB8) and COL1A2-(ITGAV+ITGB8). Down-regulation of BET1L inhibited the proliferation, migration and invasion as well as promoted apoptosis of cholangiocarcinoma cell. CONCLUSION: Integrative machine learning analysis was performed to construct a novel IRS in cholangiocarcinoma. This IRS acted as an indicator for predicting the prognosis and immunotherapy benefits of cholangiocarcinoma patients.

3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338769

RESUMO

Stalk rot is a prevalent disease of maize (Zea mays L.) that severely affects maize yield and quality worldwide. The ascomycete fungus Fusarium spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of Fusarium proliferation during the maize stalk infection that causes maize stalk rot has rarely been reported. In this study, we investigated the response of maize to F. proliferatum infestation by analyzing the phenotypic, transcriptomic, and metabolomic data of inbred lines ZC17 (resistant) and CH72 (susceptible) with different levels of resistance to stalk rot. Physiological and phenotypic results showed that the infection CH72 was significantly more severe than ZC17 after inoculation. Transcriptome analysis showed that after inoculation, the number of differentially expressed genes (DEGs) was higher in CH72 than in ZC17. Nearly half of these DEGs showed the same expression trend in the two inbred lines. Functional annotation and enrichment analyses indicated that the major pathways enriched for DEGs and DEMs included the biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant-pathogen interactions. The comprehensive analysis of transcriptome and metabolome data indicated that phenylalanine metabolism and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways played a crucial role in maize resistance to F. proliferatum infection. In addition, a transcription factor (TF) analysis of the DEGs showed that several TF families, including MYB, bHLH, NAC, and WRKY, were significantly activated after inoculation, suggesting that these TFs play important roles in the molecular regulatory network of maize disease resistance. The findings of this study provide valuable insights into the molecular basis of the response of maize to Fusarium proliferatum infection and highlight the importance of combining multiple approaches, such as phenotyping, transcriptomics, and metabolomics, to gain a comprehensive understanding of plant-pathogen interactions.


Assuntos
Fusarium , Humanos , Fusarium/genética , Transcriptoma , Zea mays/genética , Zea mays/microbiologia , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337873

RESUMO

The protein phosphatase PP2C plays an important role in plant responses to stress. Therefore, the identification of maize PP2C genes that respond to drought stress is particularly important for the improvement and creation of new drought-resistant assortments of maize. In this study, we identified 102 ZmPP2C genes in maize at the genome-wide level. We analyzed the physicochemical properties of 102 ZmPP2Cs and constructed a phylogenetic tree with Arabidopsis. By analyzing the gene structure, conserved protein motifs, and synteny, the ZmPP2Cs were found to be strongly conserved during evolution. Sixteen core genes involved in drought stress and rewatering were screened using gene co-expression network mapping and expression profiling. The qRT-PCR results showed 16 genes were induced by abscisic acid (ABA), drought, and NaCl treatments. Notably, ZmPP2C15 exhibited a substantial expression difference. Through genetic transformation, we overexpressed ZmPP2C15 and generated the CRISPR/Cas9 knockout maize mutant zmpp2c15. Overexpressing ZmPP2C15 in Arabidopsis under drought stress enhanced growth and survival compared with WT plants. The leaves exhibited heightened superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) activities, elevated proline (Pro) content, and reduced malondialdehyde (MDA) content. Conversely, zmpp2c15 mutant plants displayed severe leaf dryness, curling, and wilting under drought stress. Their leaf activities of SOD, POD, APX, and CAT were lower than those in B104, while MDA was higher. This suggests that ZmPP2C15 positively regulates drought tolerance in maize by affecting the antioxidant enzyme activity and osmoregulatory substance content. Subcellular localization revealed that ZmPP2C15 was localized in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments demonstrated ZmPP2C15's interaction with ZmWIN1, ZmADT2, ZmsodC, Zmcab, and ZmLHC2. These findings establish a foundation for understanding maize PP2C gene functions, offering genetic resources and insights for molecular design breeding for drought tolerance.

5.
Ann Med ; 56(1): 2310196, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38359439

RESUMO

Cholangiocarcinoma (CCA) is a malignant tumor originating in the bile duct and its branching epithelium. Due to its high heterogeneity, there are no specific clinical indications at the early stage, the diagnosis is often in advanced CCA. With surgical resection, the 5-year postoperative survival rate (long-term survival rate) is very poor. The regimen of gemcitabine combined with platinum has been used as the first-line chemotherapy for advanced patients. In recent years, targeted therapy for a variety of malignant tumors has made great progress, showing good efficacy and safety in advanced CCA. However, the current targeted therapy of CCA still has many challenges, such as adverse reactions, drug resistance, and individual differences. Therefore, the researches need to further explore the targeted therapy mechanism of CCA malignancies in depth, develop more effective and safe drugs, and accurately formulate plans based on patient characteristics to further improve patient prognosis in the future. This article reviews the recent progress of targeted therapy for CCA, aiming to provide a strategy for the research and clinical work of targeted therapy for CCA.


For these patients without surgical indications, chemotherapy and radiation therapy are the main treatment options, among which gemcitabine combined with cisplatin is the standard recognized chemotherapy regimen.With the gradual maturity of gene detection technology, the molecular pathology of CCA has gradually been revealed and precision oncology has become a promising method for the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Gencitabina , Prognóstico , Ductos Biliares Intra-Hepáticos/patologia
6.
Oncol Rep ; 51(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334150

RESUMO

Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Fotoquimioterapia , Humanos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Fotoquimioterapia/métodos , Qualidade de Vida
7.
Diagn Microbiol Infect Dis ; 108(1): 116119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890308

RESUMO

To evaluate the diagnostic value of combining HPV E6/E7 mRNA testing with Thin-Prep cytology (TCT) for residual/recurrence detection, a total of 289 patients who underwent loop electrosurgical excision procedure (LEEP) for high-grade cervical lesions were included. Patients were followed up at different time points, and residual/recurrent lesions were confirmed through vaginoscopy. TCT, HPV-DNA, and HPV E6/E7 mRNA tests were conducted. Diagnostic performance, including sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, was assessed. Among the patients, 76 cases showed residual lesions/recurrence, while 213 cases showed no residual/recurrence. Positive margins in the cervical-vaginal and cervical canal areas were associated with a higher risk of residual/recurrence. The combined HPV E6/E7 mRNA and TCT test showed higher diagnostic efficacy than individual tests at 6-, 12-, and 24-months follow-up. The combined test consistently demonstrated higher specificity and sensitivity, with significantly larger area under the curve (AUC) values compared to the individual tests.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/cirurgia , Eletrocirurgia , RNA Mensageiro/genética , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/cirurgia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/cirurgia , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , DNA Viral/genética
8.
J Cancer ; 14(17): 3203-3213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928420

RESUMO

Cholangiocarcinoma (CCA) is the most recurrent malignant tumor found in the biliary system. It originates from the bile duct epithelial cells characterized by easy metastasis, high intermittent rate, and poor prognosis. Acetaldehyde dehydrogenase 1 (ALDH1), a marker of cancer stem cells, the levels of which are particularly elevated in various of malignant tumors. Additionally, the increased ALDH1 levels are closely related to the degree and prognosis of malignant tumors. This study reviewed the mechanisms underlying the changes in ALDH1 levels in CCA.

9.
BMC Cancer ; 23(1): 637, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420211

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common human cancers with poor prognosis in the world. HCC has become the second leading cause of cancer-related death in China. It is urgent to identify novel biomarker and valid target to effectively diagnose, treat or predict the prognosis of HCC. It has been reported that S100A family is closely related to cell proliferation and migration of different cancers. However, the values of S100As in HCC remain to be further analyzed. METHODS: We investigated the transcriptional and translational expression of S100As, as well as the value of this family in HCC patients from the various databases. RESULTS: S100A10 was most relevant to HCC. CONCLUSIONS: The results from HCC patients' tissues and different cells also confirmed the role of S100A10 in HCC. Furthermore, we proved that S100A10 could influenced the cell proliferation of HCC cells via ANXA2/Akt/mTOR pathway. However, it would appear that the relationship between S100A10 and HCC is complex and requires more research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Biomarcadores , Proliferação de Células/genética , Linhagem Celular , Prognóstico
12.
J Nanobiotechnology ; 21(1): 173, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254105

RESUMO

Acute pancreatitis (AP) is a common and potentially life-threatening inflammatory disease of the pancreas. Reactive oxygen species (ROS) play a key role in the occurrence and development of AP. With increasing ROS levels, the degree of oxidative stress and the severity of AP increase. However, diagnosing AP still has many drawbacks, including difficulties with early diagnosis and undesirable sensitivity and accuracy. Herein, we synthesized a semiconducting polymer nanoplatform (SPN) that can emit ROS-correlated chemiluminescence (CL) signals. The CL intensity increased in solution after optimization of the SPN. The biosafety of the SPN was verified in vitro and in vivo. The mechanism and sensitivity of the SPN for AP early diagnosis and severity assessment were evaluated in three groups of mice using CL intensity, serum marker evaluations and hematoxylin and eosin staining assessments. The synthetic SPN can be sensitively combined with different concentrations of ROS to produce different degrees of high-intensity CL in vitro and in vivo. Notably, the SPN shows an excellent correlation between CL intensity and AP severity. This nanoplatform represents a superior method to assess the severity of AP accurately and sensitively according to ROS related chemiluminescence signals. This research overcomes the shortcomings of AP diagnosis in clinical practice and provides a novel method for the clinical diagnosis of pancreatitis in the future.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/diagnóstico , Espécies Reativas de Oxigênio , Polímeros , Doença Aguda , Diagnóstico Precoce
13.
BMC Bioinformatics ; 24(1): 216, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231356

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed malignancy and the third leading cause of cancer death globally. T cells are significantly correlated with the progression, therapy and prognosis of cancer. Limited systematic studies regarding the role of T-cell-related markers in HCC have been performed. METHODS: T-cell markers were identified with single-cell RNA sequencing (scRNA-seq) data from the GEO database. A prognostic signature was developed with the LASSO algorithm in the TCGA cohort and verified in the GSE14520 cohort. Another three eligible immunotherapy datasets, GSE91061, PRJEB25780 and IMigor210, were used to verify the role of the risk score in the immunotherapy response. RESULTS: With 181 T-cell markers identified by scRNA-seq analysis, a 13 T-cell-related gene-based prognostic signature (TRPS) was developed for prognostic prediction, which divided HCC patients into high-risk and low-risk groups according to overall survival, with AUCs of 1 year, 3 years, and 5 years of 0.807, 0.752, and 0.708, respectively. TRPS had the highest C-index compared with the other 10 established prognostic signatures, suggesting a better performance of TRPS in predicting the prognosis of HCC. More importantly, the TRPS risk score was closely correlated with the TIDE score and immunophenoscore. The high-risk score patients had a higher percentage of SD/PD, and CR/PR occurred more frequently in patients with low TRPS-related risk scores in the IMigor210, PRJEB25780 and GSE91061 cohorts. We also constructed a nomogram based on the TRPS, which had high potential for clinical application. CONCLUSION: Our study proposed a novel TRPS for HCC patients, and the TRPS could effectively indicate the prognosis of HCC. It also served as a predictor for immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Prognóstico , Transcriptoma , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Linfócitos T , Imunoterapia
14.
Hum Mol Genet ; 32(13): 2205-2218, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014740

RESUMO

As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.


Assuntos
Síndrome de Down , Masculino , Camundongos , Humanos , Animais , Síndrome de Down/genética , Trissomia/genética , Aneuploidia , Cromossomos , Dosagem de Genes , Modelos Animais de Doenças , Mamíferos/genética
15.
J Cell Mol Med ; 27(4): 538-552, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729917

RESUMO

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Vascular endothelial growth factor A (VEGFA) is involved in regulating biological processes, such as angiogenesis and vascular permeability, and is very closely related to the pathogenesis of various tumours, especially vascular-rich, solid tumours. Clinical data of patients with HCC and other tumours were analysed through public databases, such as the TCGA database, Gene Expression Omnibus database, Human Protein Atlas database, STRING, Tumour Immune Estimation Resource and Kaplan-Meier Plotter. The tumour tissues and adjacent normal tissues of patients with HCC from Hunan Provincial People's Hospital were collected to verify the expression of VEGFA by immunohistochemistry, immunofluorescence, Western blotting and qPCR. VEGFA expression is elevated in multiple tumour types and correlates with the prognosis of tumour patients. VEGFA is involved in regulating the tumour microenvironment and immune cell function in tumour development. Inhibition of VEGFA reduces proliferation, invasion, and migration and promotes apoptosis in HCC cells. VEGFA is a potential predictive biomarker for the diagnosis and prognosis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Prognóstico , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
16.
Am J Chin Med ; 51(3): 701-721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823098

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a rare, highly fatal hepatobiliary malignancy, with very limited treatment options and, consequently, a poor prognosis. Recently, emerging evidence has suggested the potential of quercetin (QE) for use in cancer therapy. The purpose of this study is to investigate whether QE could inhibit ICC. The effects of QE on the proliferation, apoptosis, and invasion of ICC were analyzed in vitro. The inhibitory effect of QE on ICC was also verified in vivo. The RNA sequence was applied to explore the mechanism of QE. Functional verification was also performed after RNA sequencing using activators and inhibitors of nuclear factor-kappa-B (NF-[Formula: see text]B) and ferroptosis. The results showed that QE could inhibit the proliferation and survival of ICC cells, induce the arrest of ICC cells in the G1 phase, promote the apoptosis of ICC cells, and inhibit the invasion of ICC cells. Furthermore, QE could promote ferroptosis in ICC cells by inhibiting the NF-[Formula: see text]B pathway. In conclusion, QE is a new ferroptosis inducer and NF-[Formula: see text]B inhibitor that can not only induce ferroptosis, but also inhibit the invasion of ICC cells, providing a prospective strategy for the treatment of ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Linhagem Celular Tumoral , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética
17.
Crit Rev Food Sci Nutr ; 63(26): 8249-8260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35333679

RESUMO

With the awakening of consumers' awareness of sustainable development issues and demand for terroir wines, natural wines provide opportunities for the future development of the wine industry. Microbiomes are integral to viticulture and winemaking, where various microorganisms can exert positive and negative effects on grape health and wine quality. Communities of microorganisms associated with the vineyard play an important role in soil productivity as well as disease resistance developed by the vine. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. In this review, we first examined that mimicking natural ecological cultivation to improve microbial diversity can enhance vineyard ecological services and reduce external inputs; then we examined that grape berries naturally possess all the elements of winemaking, including the nutrients for microbial growth, driving forces for the microbiota succession, and the enzymatic system for biochemical reactions; finally, we examined food safety, stability, specific interventions, and sustainability of natural wine industry-scale practices.

19.
J Cancer ; 13(13): 3444-3451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313036

RESUMO

Perihilar cholangiocarcinoma (PCC) is a malignant mass originating from the bile ducts. There is currently no unified treatment plan, and there are various treatment methods applied in clinical practice, as well as several different staging and typing systems to guide resectability, prognosis and survival prediction. The choice of treatment for PCC is closely related to the stage of the tumor. Accurate preoperative staging is necessary for correct resectability assessment and the selection of a reasonable treatment plan and surgical method; similarly, accurate postoperative pathological staging is necessary to guide further treatment and judgment of the patient's prognosis. A universally accepted staging system facilitates the comparison of cases between different centers, but there is much debate about the classification and staging of PCC. At present, the existing staging systems include the Bismuth-Corlette classification, AJCC/UICC TNM staging, modified T staging, Gazzaniga staging, JSBS staging, and Mayo staging. Each system has advantages, but there is no comprehensive guide for tumor resectability, prognosis, and survival. In this paper, the pros and cons of the different systems for staging PCC in terms of resectability, prognosis and survival prediction are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...